Repository logoRepository logo
 

NCHLT Sepedi GloVe embeddings

dc.contact.emailRoald.Eiselen@nwu.ac.za
dc.contact.nameRoald Eiselen
dc.contributor.authorRoald Eiselen
dc.contributor.otherRico Koen
dc.contributor.otherAlbertus Kruger
dc.contributor.otherJacques van Heerden
dc.date.accessioned2023-07-28T08:11:07Z
dc.date.accessioned2023-05-01
dc.date.available2023-07-28T08:11:07Z
dc.date.available2023-05-01
dc.date.issued2023-05-01
dc.descriptionStatic word embedding model based on the Global Vectors architecture (Pennington et al., 2014). The embeddings provide real-valued vector representations for Sepedi text.
dc.format.extentTraining data: Paragraphs: 292,594; Token count: 8,908,709; Vocab size: 39,346; Embedding dimensions: 400;
dc.format.size55.89MB (Zipped)
dc.identifier.urihttps://hdl.handle.net/20.500.12185/628
dc.language.isonso
dc.languagesSepedi
dc.media.categoryWord embeddings
dc.media.typeText
dc.projectNCHLT Text IV
dc.publisherNorth-West University; Centre for Text Technology (CTexT)
dc.rights.licenseCreative Commons Attribution 4.0 International (CC-BY 4.0)
dc.software.requirementsPython
dc.sourceWeb
dc.sourceGovernment Documents
dc.titleNCHLT Sepedi GloVe embeddings
dc.typeModules

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
nso.glove.vectors.tar.gz
Size:
55.89 MB
Format:
Unknown data format