Repository logoRepository logo
 

NCHLT Tshivenḓa word2vec-CBOW embeddings

dc.contact.emailRoald.Eiselen@nwu.ac.za
dc.contact.nameRoald Eiselen
dc.contributor.authorRoald Eiselen
dc.contributor.otherRico Koen
dc.contributor.otherAlbertus Kruger
dc.contributor.otherJacques van Heerden
dc.date.accessioned2023-07-28T08:12:11Z
dc.date.accessioned2023-05-01
dc.date.available2023-07-28T08:12:11Z
dc.date.available2023-05-01
dc.date.issued2023-05-01
dc.descriptionStatic word embeddings for the continuous bag of words (CBoW) flavour of the word2vec (w2v) architecture (Mikolov et al., 2013). The embedding provides real-valued vector representations for Tshivenḓa text.
dc.format.extentTraining data: Paragraphs: 304,248; Token count: 7,363,713; Vocab size: 17,456; Embedding dimensions: 400;
dc.format.size25.46MB (Zipped)
dc.identifier.urihttps://hdl.handle.net/20.500.12185/653
dc.language.isove
dc.languagesTshivenḓa
dc.media.categoryWord embeddings
dc.media.typeText
dc.projectNCHLT Text IV
dc.publisherNorth-West University; Centre for Text Technology (CTexT)
dc.rights.licenseCreative Commons Attribution 4.0 International (CC-BY 4.0)
dc.software.requirementsPython
dc.sourceWeb
dc.sourceGovernment Documents
dc.titleNCHLT Tshivenḓa word2vec-CBOW embeddings
dc.typeModules

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ve.w2v.model.cbow.tar.gz
Size:
25.46 MB
Format:
Unknown data format