Creative Commons Attribution 4.0 International (CC-BY 4.0)Roald EiselenRico KoenAlbertus KrugerJacques van Heerden2023-07-282023-05-012023-07-282023-05-012023-05-01https://hdl.handle.net/20.500.12185/660Static word embeddings for the Skipgram flavour of the word2vec (w2v) architecture (Mikolov et al., 2013). The embedding provides real-valued vector representations for Sesotho text.Training data: Paragraphs: 535,853; Token count: 17,425,650; Vocab size: 20,121; Embedding dimensions: 400;stNCHLT Sesotho word2vec-Skipgram embeddingsModules28.76MB (Zipped)