Creative Commons Attribution 4.0 International (CC-BY 4.0)Roald EiselenRico KoenAlbertus KrugerJacques van Heerden2023-07-282023-05-012023-07-282023-05-012023-05-01https://hdl.handle.net/20.500.12185/657Static word embeddings for the Skipgram flavour of the word2vec (w2v) architecture (Mikolov et al., 2013). The embedding provides real-valued vector representations for isiNdebele text.Training data: Paragraphs: 247,926; Token count: 3,633,845; Vocab size: 35,093; Embedding dimensions: 600;nrNCHLT isiNdebele word2vec-Skipgram embeddingsModules75.14MB (Zipped)